Severe Calcified Coronary Lesions: *Predictors, Managing Strategy, and Outcomes*

Duk-Woo Park, MD, PhD

Professor of Medicine, University of Ulsan College of Medicine, Heart Institute, Asan Medical Center, Seoul, Korea

 Institutional grant/research funding to CardioVascular Research Foundation (CVRF, Korea) and/or Asan Medical Center from Daiichi-Sankyo, Abbott, Boston Scientific, Medtronics, Edwards, Biosensor, ChongKunDang Pharm and Daewoong Pharm,

Severe Calcified Lesions: How Much Catastrophic? 68 years, female with PMH of DM, s/p CABG 2 month ago, recurrent chest pain

Failed CABG Grafts

LIMA-LAD

LCX Rotablator

Crush and Kissing balloon

CardioVascular Research Foundation

UNIVERSITY OF ULSAN

Post-PCI Angiogram

LAD OS MLA 7.0 mm²

CardioVascular Research Foundation

Final: "Stent Regret"

- NC balloons, Angiosculpt, Cutting ineffective because unable to impact lesion outside of stent
- Rotablation is an option in underexpanded stents but may be associated with burr entrapment and distal embolization

POC MLA 3.2 mm²

Frequency and Detection of Coronary Calcification

ADAPT-DES (11 center all-comers registry): Site-reported Mod/Sev Calcification

N = 8,582 pts

Généreux et al, Int J Cardiol 2017

Frequency of "heavy" calcification in the SYNTAX trial: Randomized + Registry N=2,636 pts with LM or 3VD

Imaging Coronary Calcification

- Fluoroscopy/cineangiography
- Intravascular ultrasound (gray-scale and radiofrequency)
- Optical coherence tomography

Detection of Coronary Calcium by Angiography, IVUS, OCT

440 lesions with IVUS and OCT-guided stent implantation

Disagreement between angiography and other modalities was due to thinner layers of calcium that importantly did NOT appear to affect stent expansion

	IVUS (+)	IVUS (-)		OCT (+)	OCT (-)		OCT (+)	OCT (-)
Angio (+)	176	1	Angio (+)	172	5	IVUS (+)	338	26
Angio (–)	188	75	Angio (-)	166	97	IVUS (-)	0	76
			_	All (N = 440)				
			IVI	US (+) (N = 36	4)			
			OCT (+) (N = 338)					
		l i			10)			
			An	gio (+) (N = 17	2)			
						N=4		
N 25 11	(a) (a)					N=1	STRE UNIVERSITY OF L	ISAN ANA

Wang et al, JACC CV Imaging 2017

Impact of Coronary Calcium in DES era

Correlates and Impact of Coronary Artery Calcifications in Women Undergoing Percutaneous Coronary Intervention With Drug-Eluting Stents

From the Women in Innovation and Drug-Eluting Stents (WIN-DES) Collaboration

Giustino, G et al. J Am Coll Cardiol Intv 2016;9:1890-901

Women with coronary artery calcifications (CAC) requiring PCI

Clinical Correlates

- Older age
- Arterial hypertension
- Smoking
- Previous CABG
- Stable clinical presentation
- Lower left ventricular function
- Impaired renal function

3-year outcomes for moderate or severe CAC (N = 1,622) versus mild or none CAC (N = 4,749)

P = 0.13

ASAN Medical Center

Giustino, G et al. J Am Coll Cardiol Intv 2016;9:1890-901

ORIGINAL ARTICLE

Prognostic implications of coronary calcification in patients with obstructive coronary artery disease treated by percutaneous coronary intervention: a patient-level pooled analysis of 7 contemporary stent trials

Christos V Bourantas,¹ Yao-Jun Zhang,¹ Scot Garg,² Javaid Iqbal,¹ Marco Valgimigli,¹ Stephan Windecker,³ Friedrich W Mohr,⁴ Sigmund Silber,⁵ Ton de Vries,⁶ Yoshinobu Onuma,¹ Hector M Garcia-Garcia,¹ Marie-Angele Morel,⁶ Patrick W Serruys^{1,7}

- 6296 patients from 7 DES RCTs
- Severe calcification: 20%

 Patients with severe lesion calcification were less likely to have undergone complete revascularization (48% vs 55.6%, p<0.001)

Bourantas CV, et al. Heart 2014;100:1158–1164

Death

Death/MI

Death/MI/any revascularization

CardioVascular Research Foundation

Bourantas CV, et al. Heart 2014;100:1158-1164

TWENTE and DUTCH PEERS (TWENTE II): Impact of Severe Calcification with 2nd Generation DES

1,423 pts with stable angina; 342 with severe calcification

At 2 years, TVF was 16.4% vs. 9.8%, p=0.001 predominantly driven by events in the first 48 hours and up to 1 year

Of note, 2 year definite ST was 1.8% vs. 0.4%, p=0.02

Huisman et al, Am Heart J 2016

Impact of Coronary Calcification in Real-World PCI Insights from the IRIS-DES registry

Communication DES > IRIS-DES > IRIS-DES, Total

IRIS-DES, Total 28,677

연구별 등록현황

Our Data from Large Registry

Prevalence of calcium according to severity

Baseline Characteristics

	No/Mild CAC (N=15153)	Mod/Sev CAC (N=1931)	P value
Age (years)	63.4 ± 10.8	66.5 ± 10.2	<0.001
Male sex	10615 (70.1%)	1223 (63.3%)	<0.001
BMI, kg/m²	24.7 ± 3.1	24.3 ± 3.4	<0.001
Hypertension	9139 (60.3%)	1368 (70.8%)	<0.001
Diabetes mellitus	4934 (32.6%)	774 (40.1%)	<0.001
Hypercholesterolemia	5897 (38.9%)	759 (39.3%)	0.76
Current smoker	4463 (29.5%)	482 (25.0%)	<0.001
Previous PCI	1935 (12.8%)	256 (13.3%)	0.57
Previous CABG	271 (1.8%)	52 (2.7%)	0.008
Chronic renal failure	469 (3.1%)	116 (6.0%)	<0.001
LVEF, %	58.9 ± 10.3	58.1 ± 11.6	0.002
Stable angina	6276 (41.4%)	801 (41.5%)	0.977
ACS presentation	8877 (58.6%)	1130 (58.5%)	0.977

IRIS-DES, 3-year Target-vessel failure (cardiac death, target vessel MI, ischemic driven TVR)

ASAN Medical Center

IRIS-DES, 3-year Target-vessel failure

(A) Target-vessel failure

IRIS-DES, 3-year Definite or probable stent thrombosis

(D) Definite or probable stent thrombosis

UNIVERSITY OF ULSAN COLLEGE MEDICINE

Hazard ratio for TVF Subgroup Analysis by Stent-Types

Treatment of coronary calcification

Why Calcium Lesion Preparation?

• Facilitates procedural success

- lumen expansion
- enables lesion access for balloons and especially stents

• <u>Plaque modification</u>

- changing lesion compliance
- minimizes vessel "trauma" (severe dissections)
- creates a larger MLD

Toolkits for Calcified Lesion

Laser Rotational atherectomy

Orbital atherectomy

CardioVascular Research Foundation

Strategy for Approaching Calcified Lesions

Adapted from Tomey et al, JACC CV Intv 2014

WHAT NEXT?

Time for Drill ?

CardioVascular Research Foundation

Treatment of Calcified Lesions: PCI guidelines

Device	ACCF/AHA/SCAI 2011	ESC/EAPCI 2014
Cutting/scoring balloon angioplasty	 Might be considered to avoid slippage induced coronary artery trauma during PCI for in-stent restenosis or ostial lesions in side branches (Class IIb-C) Should not be performed routinely during PCI (Class III-A) 	May be useful in highly calcified, rigid ostial lesions (also applies to scoring).
Rotational atherectomy	 Reasonable for fibrotic or <i>heavily calcified lesions</i> that might not be crossed by a balloon catheter or adequately dilated before stent implantation (Class IIa-C) Should not be performed routinely for de novo lesions or in-stent restenosis (Class III-A) 	Might technically be required in cases of tight and calcified lesions, to allow subsequent passage of balloons and stents.
Laser angioplasty	 Might be considered for fibrotic or moderately calcified lesions that cannot be crossed or dilated with conventional balloon angioplasty (Class IIb-C) Should not be used routinely during PCI (Class III-A) 	(Laser not mentioned for calcification)

Levine GN et al. JACC 2011;58:e44-122 Windecker S et al. EHJ 2014;35:3541-619

RCT for Calcified Lesion Treatment

PREPARE-CALC Trial

Prospective, randomized, active-controlled clinical trial in two German centers

PCI in 200 patients with severely calcified lesions

Circ Cardiovasc Interv. 2018;11:e007415

Primary Endpoint – Strategy Success

	Modified balloon (n = 100 pts.)	Rotational atherectomy (n = 100 pts.)	p-value
Strategy success	81 (81%)	98 (98%)	0.0001
Final TIMI flow < III	0 (0%)	1 (1%)	0.99
Residual stenosis >20%	2 (2%)	0 (0%)	0.49
Stent failure	4 (4%)	1 (1%)	0.36
Crossover	16 (16%)	0 (0%)	<0.0001

Co-Primary Endpoint – In stent LLL at 9 Month

Clinical Outcome at 9 Month

	Modified balloon (n = 100 pts.)	Rotational atherectomy (n = 100 pts.)	p-value
Death	2 (2%)	2 (2%)	1.00
Cardiac death	1 (1%)	1 (1%)	1.00
Non-cardiac death	1 (1%)	1 (1%)	1.00
Myocardial infarction	3 (3%)	2 (2%)	1.00
Target vessel MI	1 (1%)	2 (2%)	1.00
Periprocedural MI	1 (1%)	2 (2%)	1.00
Spontaneous MI	2 (2%)	0 (0%)	0.50
Stent thrombosis (def./prob.)	0 (0%)	0 (0%)	1.00
TVR	8 (8%)	3 (3%)	0.21
Target vessel failure	8 (8%)	6 (6%)	0.78

diovascular arch Foundation

ECLIPSE

<u>Evaluation of Treatment Strategies for Severe CaLcif</u>c Coronary Arteries: Orbital Atherectomy vs. Conventional Angioplasty <u>Prior</u> to Implantation of Drug Eluting <u>St</u>Ents

~2000 pts with severely calcified lesions; ~60 US sites

Randomize

1:1

(1.25 mm Crown followed by noncompliant balloon optimization)

2nd generation DES implantation and optimization

Conventional Angioplasty Strategy

(conventional and/or specialty balloons per operator discretion)

2nd generation DES implantation and optimization

1° endpoints: 1) Post-PCI in-stent MSA (N~400 in imaging study) 2) 1-year TVF (all patients)

2° endpoint: Procedural Success (stent deployed w/RS<20% & no maj complications)

Principal investigators: Ajay J. Kirtane, Philippe Généreux; Study chairman: Gregg W. Stone Sponsor: Cardiovascular Systems Inc.

COLUMBIA UNIVERSIT MEDICAL CENTER

Take-Home Message

- The ability to manage severe coronary calcium is a key cornerstone to the complex PCI interventionist.
- Imaging is a key component of vessel assessment and optimization and is a natural adjunct to PCI in calcified anatomy.
- In the contemporary PCI, several toolkits for treating severe calcification are available, but still underused, particularly in low-volume operator hospital.
- More RCT data are needed to fully understand the efficacy and safety of an atherectomy-first approach

